Cerca Imatges Maps YouTube Gmail Drive Calendar Traductor Més »
Inicia la sessió
Llibres Llibres 1 - 9 de 9 sobre Hence, the area of a triangle is equal to one-half the product of any two sides '....
" Hence, the area of a triangle is equal to one-half the product of any two sides ' and the sine of their contained angle. EXAMPLES. 1. Find the area of the triangle in which two sides are 31 ft. and 23 ft. and their contained angle 67° 30'. "
Plane Trigonometry - Pągina 34
1906 - 188 pągines
Visualització completa - Sobre aquest llibre

Applications of Plane and Spherical Trigonometry

Eugene Lamb Richards - 1880 - 295 pągines
...produced. CD = b sin. A. ((1) Art. 30), (Art. 46). Area = $cxCD (Ch. 5, IV.), = $ bo sin. A. Therefore, the area of a triangle is equal to one-half the product of any two adjacent sides multiplied by the sine of the included angle. Suppose c and the angles A and B are given....
Visualització completa - Sobre aquest llibre

Plane Trigonometry for Colleges and Secondary Schools

Daniel Alexander Murray - 1899
...= £ bo sin (180 — A). -i* ; It will be seen in Art. 45, that sin (180 — A) = sin A. Hence, the area of a triangle is equal to one-half the product of any two sides and the sine of their contained angle. EXAMPLES. 1. Find the area of the triangle in which two sides are 31 ft. and 23 ft....
Visualització completa - Sobre aquest llibre

Geometry: Plane Trigonometry. Chain Surveying. Compass Surveying. Transit ...

International Correspondence Schools - 1906
...= f sin A. The substitution of this value of h in the formula in Art. 26 gives , , , S = a be sin A In words, the area of a triangle is equal to one-half...chains, respectively, and their included angle is 65° 10* 40". To find the contents of the field, in acres. SOLUTION.— By the formula, 5 (square chains)...
Visualització completa - Sobre aquest llibre

Plane Trigonometry

1906
...= \AB- DC; = \ be aw (180 -A). It will be seen in Art. 45, that sin (180 — A) = sin A. Hence, the area of a triangle is equal to one-half the product of any two sides and the sine of their contained angle. EXAMPLES. 1. Find the area of the triaugle in which two sides are 31 ft. and 23 ft....
Visualització completa - Sobre aquest llibre

Plane [and Spherical] Trigonometry for Colleges and Secondary Schools

Daniel Alexander Murray - 1908
...• DC-, = \bc sin (180 — A). It will be seen in Art. 45, that sin (180 — A) = sin A. Hence, the area of a triangle is equal to one-half the product of any two sides ' and the sine of their contained angle. EXAMPLES. 1. Find the area of the triangle in which two sides are 31 ft. and 23 ft....
Visualització completa - Sobre aquest llibre

A Manual of Practical Mathematics

Frank Castle - 1908 - 594 pągines
...height. As any side may be considered as the base of a triangle, the rule may be stated thus : the area of a triangle is equal to one-half the product of any side of a triangle and the length of the perpendicular let fall on that side from the opposite angle....
Visualització completa - Sobre aquest llibre

Trigonometry

Alfred Monroe Kenyon, Louis Ingold - 1913 - 132 pągines
...have p = b sin A, and A. = (1/2)pc = (1/2) be sin A, ie the area of a triangle is equal to one half the product of any two sides and the sine of their included angle. (2) Given two angles A, C, and their included side b. Solve the triangle by Case I to find B and one...
Visualització completa - Sobre aquest llibre

Mathematics for Collegiate Students of Agriculture and General Science

Alfred Monroe Kenyon, William Vernon Lovitt - 1917 - 357 pągines
...p = b sin A Fia. 59 and (48) Area = I be sin A, whence, the area of a triangle is equal to one half the product of any two sides and the sine of their included angle. If the three sides are given, a formula for the area can be deduced from (48) as follows. From (26),...
Visualització completa - Sobre aquest llibre

Elements of Plane Trigonometry

Alfred Monroe Kenyon, Louis Ingold - 1919 - 117 pągines
...one of the given sides, as p upon b, then p = a sin C and by (1) A = £ b (a sin C) ; whence (2) The area of a triangle is equal to one-half the product of any two sides into the sine of their included angle. 53. Area from Three Sides. If A the three sides are given, draw...
Visualització completa - Sobre aquest llibre




  1. La meva col·lecció
  2. Ajuda
  3. Cerca de llibres avanēada
  4. Descarrega PDF