New Plane and Spherical Trigonometry

Portada
Leach, Shewell and Sanborn, 1896 - 126 pàgines
 

Què opinen els usuaris - Escriviu una ressenya

No hem trobat cap ressenya als llocs habituals.

Pàgines seleccionades

Altres edicions - Mostra-ho tot

Frases i termes més freqüents

Passatges populars

Pàgina 96 - Spherical Triangle the cosine of any side is equal to the product of the cosines of the other two sides, plus the product of the sines of those sides into the cosine of their included angle ; that is, (1) cos a = cos b...
Pàgina 63 - In any triangle the square of any side is equal to the sum of the squares of the other two sides minus twice the product of these two sides and the cosine of their included angle.
Pàgina 62 - In every plane triangle, the sum of two sides is to their difference as the tangent of half the sum of the angles opposite those sides is to the tangent of half their difference.
Pàgina 6 - ... in a direction contrary to the motion of the hands of a watch, with — and be this particularly noted — a constant tendency to turn inwards towards the centre of lowest barometer.
Pàgina 44 - ... the logarithm of a fraction is equal to the logarithm of the numerator minus the logarithm of the denominator.
Pàgina 97 - A cos 6 = cos a cos c + sin a sin c cos B cos c = cos a cos 6 + sin a sin 6 cos C Law of Cosines for Angles cos A = — cos B...
Pàgina 43 - The logarithm of a product is equal to the sum of the logarithms of its factors.
Pàgina 81 - The sum of the angles of a spherical triangle is greater than two and less than six right angles ; that is, greater than 180° and less than 540°. (gr). If A'B'C' is the polar triangle of ABC...
Pàgina 87 - I. The sine of the middle part is equal to the product of the tangents of the adjacent parts.
Pàgina 95 - In any spherical triangle, the greater side is opposite the greater angle ; and conversely, the greater angle is opposite the greater side.

Informació bibliogràfica