### Quč opinen els usuaris -Escriviu una ressenya

No hem trobat cap ressenya als llocs habituals.

### Continguts

 Secció 1 7 Secció 2 29 Secció 3 46 Secció 4 48 Secció 5 63 Secció 6 70 Secció 7 81 Secció 8 82
 Secció 11 89 Secció 12 91 Secció 13 93 Secció 14 101 Secció 15 104 Secció 16 112 Secció 17 121 Secció 18 137

 Secció 9 85 Secció 10 86
 Secció 19 149 Secció 20 171

### Passatges populars

Pŕgina 9 - If two triangles have two sides of the one equal to two sides of the...
Pŕgina 18 - Any two sides of a triangle are together greater than the third side.
Pŕgina 21 - Geometry, printed anno 1760, observes in his notes, that it ought to have been shewn, that the point F falls below the line EG. This probably Euclid omitted, as it is very easy to perceive, that DG being equal to DF, the point G is in the circumference of a circle described from the centre D at the distance DF, and must be in that part of it which is above the straight line EF, because DG falls above DF, the angle EDG being greater . than the angle EDF.
Pŕgina 71 - Ratio is the relation which one quantity bears to another in respect of magnitude, the comparison being made by considering what multiple, part, or parts, one is of the other.
Pŕgina 8 - For, if the triangle ABC be applied to DEF, so that the point A may be on D, and the straight line AB upon DE ; the point B shall coincide with the point E...
Pŕgina 9 - Two triangles are equal, when the three sides of the one are equal to the three sides of the other, each to each.
Pŕgina 20 - Of the two sides DE, DF, let DE be the side which is not greater than the other, and at the point D, in the straight line DE, make (i.
Pŕgina 49 - The perpendicular is the shortest straight line that can be drawn from a given point to a given straight line; and of others, that which is nearer to the perpendicular is less than the more remote; and two, and only two, equal straight lines can be drawn from the given point to the given straight line, one on each side of the perpendicular.
Pŕgina 24 - Two straight lines which intersect one another cannot be both parallel to the same straight line.
Pŕgina 175 - If an equilateral triangle be inscribed in a circle, and the adjacent arcs cut off by two of its sides be bisected, the line joining the points of bisection shall be trisected by the sides.