Computation and Mensuration

Portada
Macmillan, 1907 - 92 pàgines
 

Què opinen els usuaris - Escriviu una ressenya

No hem trobat cap ressenya als llocs habituals.

Altres edicions - Mostra-ho tot

Frases i termes més freqüents

Passatges populars

Pàgina 55 - The logarithm of any power of a number is equal to the logarithm of the number multiplied by the exponent of the power.
Pàgina 65 - Substitute these values into the formula for the sum of the first n terms of a geometric progression, and simplify: a -ar...
Pàgina 4 - The square on the hypotenuse equals the sum of the squares on the other two sides.
Pàgina 33 - The radian is the plane angle between two radii of a circle which cut off on the circumference an arc equal in length to the radius. The steradian is the solid angle which, having its vertex in the center of a sphere, cuts off an area of the surface of the sphere equal to that of a square with sides of length equal to the radius of the sphere.
Pàgina 41 - ... the initial point of the first vector to the terminal point of the last is their vector sum.
Pàgina 86 - ... bounded on one side by a straight line and on the other by a zigzag.
Pàgina 54 - The logarithm of a quotient equals the logarithm of the dividend minus the logarithm of the divisor.
Pàgina 57 - In a right triangle, the perpendicular from the vertex of the right angle to the hypotenuse is a mean proportional between the segments of the hypotenuse: p2 = mn. Any two similar figures, in the plane or in space, can be placed in " perspective," that is, so that lines joining corresponding points of the two figures will pass through a common point.
Pàgina 87 - S'-A'B'C' be two triangular pyramids having equivalent bases situated in the same plane, and equal altitudes. To prove that S-ABC =0= S'-A'B'C'. Proof. Divide the altitude into n equal parts, and through the points of division pass planes parallel to the plane of the bases, forming the sections DEF, GHI, etc., D'E'F', G'H'I', etc. In the pyramids S-ABC and S'-A'B'C' inscribe prisms whose upper bases are the sections DEF, GHI, etc., D'E'F', G'H'T, etc.

Informació bibliogràfica