| Philip Ronayne - 1717 - 408 pągines
...Sum — ~ diff. is = lejjer of them. But Wholes are as their Halves : Wherefore the Sum of the Legs **is to their Difference as the Tangent of half the Sum of the** i. s oppofite is to the Tangent of half their difference. ft. fD • Me»»»- !-*- '"•• AXIOM... | |
| William Hawney - 1725 - 479 pągines
...the Tangent of half their Difference. But Wholes are as their Halves: Therefore the Sum of the Legs **is to their Difference, as the Tangent of half the Sum of the** oppofite Angles, is to the Tangent of half their Difference. Which was, &c. From this Axiom the following... | |
| Philip Ronayne - 1738 - 421 pągines
...В С : : S С •• S A. QE.Z). Axiom III. The Sum of the Legs of any Angle of a Plane Triangle, **Is to their Difference, As the Tangent of half the Sum of the Angles** oppofite to thofe Legs, Is to the Tangent of half their Difference. 2)emonfiratiott. D (by 8. iJSuA&m.)... | |
| 1751 - 399 pągines
...writers of Trigonometry, that the Sum of the Sides, including any given Angle Angleof a plain Triangle, **is to their Difference, as the Tangent of half the Sum of the** unknown Angles, is to the Tangent of half their Difference ; therefore, if the including Sides of two... | |
| Popular educator - 1767
...the rule of sines, and may be thus written :— sin. A _ ein. B _ gin. С abc .(66) 2. The sum of any **two sides is to their difference as the tangent of half the sum of the** opposite angles is to the tangent of half their difference. By the lost proposition, Then, componenda... | |
| John Ward - 1771 - 480 pągines
...the Tangent of half -their Difference: But Wholes are as their Halves ; wherefore the Sum of the Legs **is to their Difference, as the Tangent of half the Sum of the Angles** oppofite is to the Tangent of half their Difference. J. ED Axiom IV. The Bafe, or greateft Side of... | |
| John Hamilton Moore - 1791 - 296 pągines
...Tangent of half their Difference : but Wholes are as their Halves ; wherefore the Sum of the Leg« **is to their Difference, as the Tangent of half the Sum of the** «ppofite Angles, is to the Tangent of half their Difference, E* The . Tp find the Angles D and C,... | |
| Euclid, Robert Simson - 1806 - 518 pągines
...three being given, the fourth is also given. ' PROP. III. FIG. 8. In a plane triangle, the sum of any **two sides is to their difference, as the tangent of half the sum of the angles** at the base, to the tangent of half their differcnce. • •• Let ABC be n plane triangle, tl>e... | |
| John Bonnycastle - 1806 - 419 pągines
...• Hence, since AC, OF are parallel, EcistocrasEA. is to AC; that is, the sum of the sides AB, Bc **is to their difference, as the tangent of half the sum of** their opposite angles B AC, BCA is to the tangent of half their difference. , QE u. THEOREM III. 95.... | |
| Robert Gibson - 1808 - 440 pągines
...la any plane triangle ABC, the sum of the two. given sides AB and £C, including a given angle ABC, **is to their difference, as the tangent of half the sum of the** two unknown angles A and C is to the tangent of half their difference. Fig. 11. PLANE TRIGONOMETRY.... | |
| |