Elements of Plane and Spherical Trigonometry

J.B. Lippincott, 1890 - 159 pàgines

Què opinen els usuaris - Escriviu una ressenya

No hem trobat cap ressenya als llocs habituals.

Altres edicions - Mostra-ho tot

Frases i termes més freqüents

Passatges populars

Pàgina 70 - In any triangle the square of any side is equal to the sum of the squares of the other two sides minus twice the product of these two sides and the cosine of their included angle.
Pàgina 101 - A spherical triangle is a portion of the surface of a sphere, bounded by three arcs of great circles.
Pàgina 104 - Spherical Triangle the cosine of any side is equal to the product of the cosines of the other two sides, plus the product of the sines of those sides into the cosine of their included angle ; that is, (1) cos a = cos b...
Pàgina 106 - A. {cos a = cos b cos c + sin b sin c cos A. cos b = cos a cos c + sin a sin c cos B.
Pàgina 103 - The law of sines states that in any spherical triangle the sines of the sides are proportional to the sines of their opposite angles: sin a _ sin b __ sin c _ sin A sin B sin C...
Pàgina 70 - In any plane triangle, the sum of any two sides is to their difference, as the tangent of half the sum of the opposite angles is to the tangent of half their difference.
Pàgina 49 - Div1ding each term of the fraction by cos x cos y, sin x cos у . cos x sin у cos x...
Pàgina 144 - THEOREM. The area, of a spherical triangle is equal to its spherical excess multiplied by a tri.rectangular triangle.
Pàgina 14 - The cosine of an angle is the ratio of the adjacent side to the...

Informació bibliogràfica