Introduction to Plasma Physics and Controlled Fusion, Volum 1

Portada
Springer, 31 de gen. 1984 - 421 pàgines
TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.

Altres edicions - Mostra-ho tot

Sobre l'autor (1984)

Prof. Chen is a plasma physicist with a career extending over 48 years and encompassing both experiment and theory. He has devoted about a decade each to the subfields of magnetic fusion, laser fusion, plasma diagnostics, basic plasma physics, and low-temperature plasma physics. Most plasma students are familiar with his textbook Introduction to Plasma Physics and Controlled Fusion. His current interest is in plasma processing of semiconductor circuits, especially the radiofrequency sources used to make computer chips, and in the physical processes that permit etching millions of transistors on a single chip. To learn more about this, please visit the site for UCLA's Low Temperature Plasma Technology Laboratory (LTPTL): http: //www.ee.ucla.edu/ ltptl/. Though formally retired from teaching, Prof. Chen still maintains an active research group with graduate students and postdocs.

Informació bibliogràfica